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ABSTRACT

In this project, we investigate the evolution and performance
of document retrieval methods through a systematic code
review and empirical experimentation. Our study covers
three main categories: sparse retrieval using TF-IDF and
BM25, dense retrieval using state-of-the-art sentence
embeddings and FAISS-based nearest neighbor search,
and hybrid retrieval approaches combining sparse and
dense approaches. We implement these methods from
scratch, evaluate them on the MS MARCO dataset, and
measure performance using Mean Reciprocal Rank (MRR)
and retrieval time. Beyond simple implementation, we
explore key factors affecting retrieval quality and efficiency,
such as different embedding models, data scales, and
combination strategies. Through our findings, we reveal the
strengths and limitations of each approach, discuss
emerging trends in retrieval technologies, and propose
future research directions aiming to further bridge the gap
between sparse and dense methods.
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1 INTRODUCTIONS

Document retrieval is a fundamental component of
information retrieval systems, essential for a wide range of
applications such as web search engines, recommendation
systems, and digital libraries. The primary goal of document
retrieval is to identify and rank documents from a large
corpus that are most relevant to a given user query. Over
the decades, retrieval methods have advanced significantly,
evolving from early models based on exact term matching
to more advanced neural network-based representations
that capture deeper semantic relationships between queries
and documents. Classical sparse retrieval methods, such as
Term Frequency-Inverse Document Frequency (TF-IDF)

and BM25, represent documents and queries as sparse
vectors over a predefined vocabulary. These approaches
rely heavily on matching terms between queries and
documents, offering efficiency and interpretability but often
struggling with vocabulary mismatch and synonymy. In
contrast, dense retrieval techniques leverage advances in
deep learning to embed queries and documents into dense,
continuous vector spaces. Models like Sentence-BERT and
CoIBERT aim to capture semantic meaning beyond exact
token matches, allowing for improved retrieval performance,
especially in scenarios involving paraphrasing or complex
information needs. However, dense retrieval methods bring
new challenges related to computational cost, storage
overhead, and retrieval latency, particularly for large-scale
corpora. In this project, we aim to systematically explore the
evolution and performance trade-offs between sparse,
dense, and hybrid retrieval strategies. Our study consists of
two main components: (1) a code review and
reimplementation of representative retrieval methods, and
(2) a set of empirical experiments evaluating these methods
on a subset of the MS MARCO dataset, a widely used
benchmark for passage retrieval. For evaluation, we adopt
Mean Reciprocal Rank (MRR) to measure retrieval quality
and retrieval time to assess efficiency. In addition to basic
performance comparisons, we investigate several key
factors that influence retrieval outcomes, including corpus
size and combination strategies for hybrid approaches.
Through experimentation and analysis, we aim to uncover
the strengths and weaknesses of different retrieval
paradigms, explore emerging trends in document retrieval
research, and propose potential directions for future
development. By providing a comprehensive and practical
perspective on sparse, dense, and hybrid retrieval methods,
this project aims not only to deepen our understanding of
retrieval system design but also to inform future research on
bridging the gap between traditional and neural
representations for document retrieval.

2 RELATED WORK

2.1 Boolean Retrieval



The earliest methods of document retrieval were based on
Boolean retrieval models, where documents were retrieved
if they satisfied logical combinations of query terms using
operators like AND, OR, and NOT. This approach was
straightforward: a document either matched a query exactly
or it did not, without any ranking of results. Boolean retrieval
systems assumed that documents and user queries could
be accurately represented by sets of index terms. In
practice, this was unrealistic because of the uncertainty in
how users formulate queries and how documents cover
topics. Furthermore, Boolean retrieval treated relevance as
a binary condition; documents were either relevant or not,
without recognizing varying degrees of relevance. To
address the inflexibility and limitations of pure Boolean
models, extended Boolean approaches were proposed,
such as the p-norm model, which introduced the concept of
partial matching and ranking documents based on the
degree to which they satisfied the query. However, despite
these theoretical advances, many retrieval systems
continued to rely on the traditional Boolean framework for
years, primarily due to financial constraints and a lack of
awareness of practical research advancements (Radecki,
1988).

2.2 Vector Space Model

Over time, the shortcomings of Boolean retrieval, especially
its inability to rank documents by relevance or handle partial
matches, became more apparent. This led to the
development of ranked retrieval models, such as the vector
space model (VSM), which offered a major improvement by
introducing the concept of graded relevance and ranked
results. In this model, documents and queries are
represented as sparse vectors in a high-dimensional space,
where each dimension corresponds to a term from the
vocabulary. Most vector entries are zero, indicating the
absence of certain terms in a document or query, which is
characteristic of sparse retrieval. The relevance of a
document to a query is determined by calculating the
similarity between their vectors, most commonly using
cosine similarity, which measures the angle between two
vectors rather than their distance. This approach allowed
documents to be ranked according to their degree of match
to a query, rather than returning an unranked set. Unlike
Boolean retrieval, VSM could recognize partial matches and
varying degrees of relevance, making it significantly more
flexible and effective, particularly for long or complex
queries. In addition, term weighting schemes such as
TF-IDF (term frequency—inverse document frequency) were
developed to give more importance to distinctive and
informative terms. TF-IDF increases the weight of terms that
are frequent in a document but rare across the corpus,

thereby improving the ability of vector-based retrieval
systems to differentiate between highly relevant and less
relevant documents (Salton, Wong, & Yang, 1975).

2.3 Probabilistic Models

The next significant step in the evolution of information
retrieval models was the development of probabilistic
models, which provided a more advanced approach to
ranking documents based on relevance. These models,
including the widely used BM25 ranking function, relied on
probabilistic inference, a technique that models the
likelihood that a document is relevant to a given query
based on statistical principles. Unlike the Vector Space
Model (VSM), which depends on deterministic term
matching to measure document similarity, probabilistic
models aim to consider the uncertainty in determining a
document's relevance. The main idea of probabilistic
models is to estimate the probability of relevance of a
document for a query, evaluating elements such as term
frequency (how often a term appears in a document),
document frequency (how common or rare a term is across
the collection), and document length (which influences term
distribution within a document). One well-known example of
a probabilistic model is BM25, which builds on the basic
probabilistic framework by adjusting the weight of terms
based on their frequency in a document and their
occurrence across the entire document collection. BM25
uses a limiting function for term frequency, meaning the
contribution of a term to the relevance score increases with
frequency, but at a decreasing rate as the term becomes
more frequent. It also normalizes for document length to
prevent longer documents from being unfairly ranked higher
(Hiemstra, 1998). By considering these factors, BM25
provides a more advanced ranking of documents that often
outperforms traditional vector space models, especially
when working with large datasets. The flexibility and
robustness of probabilistic models, particularly in large and
varied datasets, make them more effective for many
retrieval tasks. This shift to probabilistic models also laid the
foundation for more complex methods, such as Latent
Dirichlet Allocation (LDA).

2.4 Semantic Analysis

Building on the advancements made by probabilistic
models, the focus of further improving document retrieval
shifted towards semantic analysis, where the goal was to
capture deeper relationships between words and their
meanings. One of the first significant steps in this direction
was Latent Semantic Indexing (LSI). LSI utilized singular
value decomposition (SVD) to reduce the dimensionality of



the term-document matrix, revealing hidden structures and
relationships between terms and documents. By mapping
both documents and queries into a latent semantic space,
LSI was able to capture synonymy (different words with
similar meanings) and polysemy (words with multiple
meanings) more effectively than traditional term-based
models (Deerwester et al., 1990). However, despite its
strengths, LS| was computationally intensive and struggled
with scalability for very large collections. As the field
advanced, Latent Dirichlet Allocation (LDA) emerged as a
more scalable and theoretically robust approach to topic
modeling (Blei, Ng, & Jordan, 2003). Unlike LSI, which
focused on dimensionality reduction, LDA treated
documents as mixtures of topics, with each topic being
characterized by a distribution over words. This probabilistic
framework allowed for a more insightful understanding of a
document’s content, enabling retrieval based on inferred
semantic topics rather than simple surface-level word
matching. The shift towards topic modeling with LDA
significantly improved retrieval quality, especially for
complex or large-scale corpora, marking a major
advancement in the evolution of retrieval models. While
semantic models like LSI and LDA brought substantial
improvements in capturing the underlying meaning of
documents, they still had limitations when it came to
optimizing ranking based on specific user intent and
contextual factors. As the field of information retrieval
continued to advance, the focus turned towards integrating
machine learning techniques. This evolution led to the
development of Learning to Rank (LTR) models, which
moved the emphasis from semantic analysis to learning
optimal ranking strategies directly from data.

2.5 Learning to Rank (LTR)

With the rise of machine learning, document retrieval shifted
towards models that could learn optimal retrieval strategies
from data. Traditional IR models relied on manually tuned
parameters and heuristics, but learning to rank (LTR)
approaches allowed systems to automatically learn ranking
functions by using labeled training data. Features such as
term frequency, document length, query document similarity,
and metadata could be integrated into supervised learning
models like Support Vector Machines (SVM) or
gradient-boosted decision trees to predict document
relevance. LTR frameworks typically involve three
paradigms: pointwise, pairwise, and listwise approaches,
each offering different ways to model the ranking problem
(Cao et al.,, 2007). These machine learning techniques
enabled significant improvements over traditional retrieval
models by adapting to specific user behaviors, tasks, and
domains. While LTR models helped improve document
retrieval by automatically learning how to rank documents

based on various features, they still depended on manually
selected features. These models worked well for ranking but
struggled with understanding the deeper meaning behind
words and how they relate to each other in a more natural
way (Liu, 2009).

2.6 Neural Approaches

The limitations of Learning to Rank (LTR) in capturing
deeper semantic relationships between words prompted the
development of neural approaches that could better
understand the context and meaning of language. While
LTR models relied on manually selected features, neural
approaches leverage deep learning models to automatically
learn these relationships from data. The development of
word embeddings enabled words to be represented as
dense vectors in a continuous semantic space, allowing
retrieval systems to capture deeper semantic relationships
between terms based on their usage patterns and contexts.
This advancement led to the development of dense retrieval
methods, in which both queries and documents are
embedded into a shared vector space (Gao & Callan,
2021). This approach enables retrieval based on semantic
similarity rather than exact term matching. Dense retrieval
systems, such as Dense Passage Retrieval (DPR) and
CoIBERT, utilize deep learning models like BERT to
generate contextual embeddings, where the meaning of a
word varies depending on its surrounding words (Devlin et
al.,, 2019). This ability to model words dynamically greatly
improves the system's capacity to understand user meaning
and the complex interpretations of queries and documents.

2.7 Hybrid Retrieval Models

Despite the advancements brought by dense retrieval
methods, such as the ability to understand semantic
relationships and context, there remain cases where
traditional sparse retrieval methods, like BM25, still offer
distinct advantages. Sparse methods are particularly
effective in precise term matching, especially for rare terms,
and they are computationally efficient for large-scale
datasets. On the other hand, dense retrieval methods are
particularly strong in capturing the deeper, semantic
meaning of words and handling paraphrases. Recognizing
that sparse and dense methods each had unique strengths,
hybrid retrieval systems were developed to combine the
advantages of both. These systems combined traditional
sparse retrieval (e.g., BM25) with dense neural retrieval. By
combining both approaches, hybrid systems can retrieve a
broader range of relevant documents that might be missed
if only one method is used (Chen et al., 2022).



2.8 Retrieval Augmented Generation (RAG)

Following the development of hybrid retrieval systems,
research expanded toward using retrieved documents not
just to rank results but to actively support the generation of
new content. Retrieval Augmented Generation (RAG)
models combine retrieval and generation into a single
unified process. Instead of just identifying and presenting
relevant documents, RAG models feed retrieved documents
directly into a generative language model to help craft more
accurate and contextually grounded responses. This
architecture is well-suited for tasks such as open domain
question answering and knowledge-intensive applications,
where relying only on a model's internal knowledge may be
insufficient. A typical RAG system consists of two
components, a retriever (such as DPR or a hybrid retriever)
and a generator (such as T5, BERT, or GPT-based models).
The retriever first identifies the top-k most relevant
documents, and the generator then conditions on both the
original query and the retrieved documents to produce an
accurate and contextually grounded response. By directly
coupling retrieval with generation, RAG systems can reduce
hallucination and better handle the need for up-to-date
information (Lewis et al., 2020).

3 Technical details

In the experiment, we implemented and evaluated a range
of document retrieval methods, specifically sparse retrieval
(TF-IDF and BM25), dense retrieval (Sentence-BERT with
FAISS), and hybrid approaches that combine both sparse
and dense methods. The primary dataset used for
evaluation was the MS MARCO passage ranking dataset
(version 2.1), which is a well-established benchmark in
information retrieval tasks. All retrieval methods were tested
on 50, 4988, 49896, and 997,459 document subsets of MS
MARCO to ensure correctness and evaluate performance at
scale. Queries, passages, and relevance labels were
parsed and stored in dictionaries for efficient lookup. Each
query is associated with a unique set of relevant passages,
which enables precise evaluation of retrieval performance
using metrics such as Mean Reciprocal Rank (MRR).

3.1 Sparse Retrieval

For sparse retrieval, two classical methods were
implemented: TF-IDF and BM25. The TF-IDF approach
utilized TfidfVectorizer from scikit-learn to construct a
term-document matrix for the corpus. Cosine similarity
between the query and all passages was computed to
retrieve the top-k documents. For BM25, the rank _bm25
library was used. The corpus was first tokenized into
word-level units, and then BM25 scoring was performed

against the tokenized query. Both methods produced ranked
document lists based on their respective scoring
mechanisms.

3.2 Dense Retrieval

Dense retrieval was implemented using the Sentence-BERT
model multi-qa-distilbert-cos-v1 from the
sentence-transformers library. Both corpus and queries
were embedded into fixed-length vector representations
using the model and normalized to unit vectors to enable
cosine similarity search. To perform efficient nearest
neighbor search in large embedding spaces, the FAISS
library was used to index the corpus embeddings. An
IndexFlatIP index (for inner product similarity) was created.
Each query embedding was searched against this index to
retrieve top-k passages based on dense similarity scores.

3.3 Hybrid Retrieval (Sparse + Dense)

To combine the strengths of both sparse and dense retrieval
methods, a hybrid retrieval mechanism was implemented.
The system allows for merging the results through different
strategies, including intersection, union, and score-based
ranking. In the intersection strategy, only documents
appearing in both the sparse and dense top-k results are
retained, while the union strategy combines all unique
documents retrieved by either method. The framework
supports flexible switching between sparse methods
(TF-IDF  or BM25) and dense retrieval, enabling
experiments with various integration approaches.

4 Evaluation & Discussion

The results clearly show that dense retrieval and BM25
consistently outperform TF-IDF across all tested document
subset sizes. While TF-IDF achieves a Mean Reciprocal
Rank (MRR) of 0.5, both BM25 and dense retrieval reach
perfect MRR scores of 1.0, maintaining this performance
even as the dataset scales from 50 to 5000 queries and
thousands of documents. This indicates that BM25 and
dense retrieval are highly effective at capturing semantic
relevance and ranking relevant passages at the top. Dense
retrieval, utilizing semantic embeddings, is also slightly
faster than BM25 due to efficient vector search enabled by
FAISS. Hybrid retrieval strategies further emphasize these
strengths. Combining TF-IDF with dense retrieval does not
significantly improve MRR, maintaining a score of 0.5,
indicating limited complementarity between the two
methods. However, combining BM25 with dense retrieval
(both intersection and union strategies) preserves the
strong performance (MRR = 1.0), as BM25 retrieves highly
relevant documents based on term frequency and



normalization, while dense retrieval captures semantic
relationships not represented in sparse methods. The
minimal overhead in retrieval time for hybrid approaches
supports their practical viability. As the number of queries
and documents increases, the relative performance trends
remain consistent, but the scalability and robustness of
each method become more apparent. Dense retrieval
continues to maintain perfect MRR even at larger scales,
showcasing its ability to generalize semantic relevance
across a broader corpus. BM25 also remains highly
effective, proving that traditional lexical methods remain
competitive when properly tuned. In contrast, TF-IDF's
performance stagnates at an MRR of 0.5, indicating

limitations in modeling complex contextual relationships.
Dense retrieval’s scalability is further supported by its
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Figure 2: Results of sample size 4988
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Figure 3: Results of sample size 49896
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Figure 4: Results of sample size 997459

5 Limitations

Although the results demonstrate potential, this study has
several limitations that should be acknowledged. Primarily,
all experiments were conducted on a single dataset, which
may limit the generalizability of the findings. Different
datasets, especially those with varying domain
vocabularies, passage lengths, or noise levels, could
produce different performance outcomes across retrieval
methods. Additionally, the evaluation was primarily based
on Mean Reciprocal Rank (MRR) and retrieval scores,
without deeper analysis of downstream task performance,
such as question answering accuracy or user satisfaction.
The scalability of Dense Retrieval was only partially
explored; while runtime was measured, indexing and
memory usage were not evaluated in depth, which could be
critical when deploying these methods in real-world
systems.

6 Proposal for future directions

Building on the current findings, several important research
directions can be pursued to deepen and broaden the
understanding of retrieval systems. First, expanding the
evaluation across diverse datasets, such as biomedical
literature, legal documents, or multi-lingual corpora, would
help assess how retrieval methods generalize across
domains  with  different linguistic and semantic
characteristics. Second, incorporating domain-adaptive
fine-tuning for Dense Retrieval models could significantly
enhance their semantic matching capabilities, particularly in
specialized contexts where vocabulary and usage differ
from pretraining data. Another direction is the exploration of
hybrid architectures that dynamically weight sparse and
dense signals, rather than relying on static intersection or

union strategies. This could allow retrieval models to
adaptively emphasize the most relevant features based on
the query context. Additionally, instead of always combining
sparse and dense signals, training a small rule-based or Al
system to choose the best signal for each query could
improve retrieval efficiency. In addition, teaching the system
to detect query styles, such as formal language, slang, or
question formats, and adapting the retrieval strategy
accordingly would further refine the process. Integrating
user feedback loops, such as click-through rates or explicit
relevance judgments, could lead to personalized or adaptive
retrieval systems that evolve with user behavior.
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